Towards Dynamically Adaptive Weather Analysis and Forecasting in LEAD

نویسندگان

  • Beth Plale
  • Dennis Gannon
  • Daniel A. Reed
  • Sara J. Graves
  • Kelvin Droegemeier
  • Robert Wilhelmson
  • Mohan Ramamurthy
چکیده

LEAD is a large-scale effort to build a service-oriented infrastructure that allows atmospheric science researchers to dynamically and adaptively respond to weather patterns to produce better-than-real time predictions of tornadoes and other ”mesoscale” weather events. In this paper we discuss an architectural framework that is forming our thinking about adaptability and give early solutions in workflow and monitoring. 7

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of Dynamically Adaptive Weather Analysis and Forecasting in LEAD: Four Years Down the Road

Linked Environments for Atmospheric Discovery (LEAD) is a large-scale cyberinfrastructure effort in support of mesoscale meteorology. One of the primary goals of the infrastructure is support for real-time dynamic, adaptive response to severe weather. In this paper we revisit the conception of dynamic adaptivity as appeared in our 2005 DDDAS workshop paper, and discuss changes since the origina...

متن کامل

Sales Budget Forecasting and Revision by Adaptive Network Fuzzy Base Inference System and Optimization Methods

The sales proceeds are the most important factors for keeping alive profitable companies. So sales and budget sales are considered as important parameters influencing all other decision variables in an organization. Therefore, poor forecasting can lead to great loses in organization caused by inaccurate and non-comprehensive production and human resource planning. In this research a coherent so...

متن کامل

A new adaptive exponential smoothing method for non-stationary time series with level shifts

Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...

متن کامل

Improving Weather Forecasting Accuracy by Using r-Adaptive Methods Coupled to Data Assimilation Algorithms

Weather impacts all of our lives and we all take a close interest in it, with every news report finishing with a weather forecast watched by millions. Accurate weather forecasting is essential for the transport, agricultural and energy industries and the emergency and defence services. The Met Office plays a vital role by making 5-day forecasts, using advanced computer algorithms which combine ...

متن کامل

Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study

Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005